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LETTER TO THE EDITOR 

Self-organized ruptures in an elastic medium: a possible 
model for earthquakes 

Huang-Jian Xutll, Birger Bergersent, and Kan Cheniy 
t Depanmenl of Physics, Univenity of Brilish Calumbia, Vanmuver, BC V6TlZ1, 
Canada 
t Depanment of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada 

Rmived 10 August 1992 

AbslraeL We propose a new discretization scheme for the elastic sws field. h a l  
ruptures give rise 10 a stress redistribution which a n  be represented by double muples. 
llte model is applied to eanhquake simulation. Computational efficiency is achieved 
by the use of laltice Green functions. The model allows inclusion of phenomenological 
features such as annealing and Slatic fatigue. 

The aim of this letter is to introduce a new computational approach to the study of 
fractures in elastic media. For a review of existing methods, sec [l]. Most commonly, 
a local rupture consists of the breaking of a bond (or beam), while we here will 
consider the breaking of plaquets. In our approach the stress and strain tensors 
are defined directly on each plaquet, which is our basic unit of discretization. This 
provides a very efficient algorithm when combined with the use of lattice Green 
functions. 

The method is illustrated by applying it to earthquake simulations. The 
dynamics of earthquakes is rich and complex [Z]. In order to better understand the 
phenomenology, some essential physics should be included in the models 131. The 
tensor character of the stresses needs to be taken into account in a context where the 
stress redistribution following local ruptures is consistent with elastic theory. Also, a 
useful model should be able to incorporate some basic properties of rocks (e.g. static 
fatigue) [2,4] in the local dynamics. 

Our approach is based in part on the crack-propagation model proposed by Chen 
er ul [SI. In their model, a rupture occurs when the local stress exceeds a threshold. In 
addition, a long-range redistribution of force is introduced following a local rupture. 
This model differs from the more frequently used Burridge-Knopoff model [6,q 
in that it describes an active region rather than a single linear fault. There are 
shortcomings in the model of [5].  First, the tensorial elastic force is not correctly 
represented. Second, the model does not exhibit aftershock sequences. The model 
we describe below overcomes these shortcomings. 

11 Present address: Institute of Geophysics and Planelaly Physics, University of California. Los Angeles, 
CA 90024, USA. 
ll Permanenl address: Depanment of Physics, Nalional University of Singapore, Singapore O f i l l .  
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Figure 1. Schematic illustration of a 
region subjected to external shear swesp. 
?he syxtem is divided into many plaquets, 
and is driven by slowly increasing sheer 
stress. When a lwl stress is larger 
than the mrresponding threshold stress, 
the plaquet fractures, causing a long- 
range redislrihulion of elastic forces. The 
force dislribulion of local doublecouple 
sources are also illustrated: (a) Fraclure 
in 6, direction; (h) Fracture in 2, + 2, 
direction. 

allr modei i-l flg.uie i, .&re aie foc.usii,g oi, @oiei,iia:) 
earthquake region rather than on individual pre-existing faults. For simplicity 
we only employ a two-dimensional model. Generalization to three dimensions is 
straightfoward. The system is divided into L x L plaquets. We define a displacement 
vector w on each node (corner of a plaquet). The distortion of a plaquet is 
characterized by the strain tensor (defined at the centre of each plaquet) 

(1) 

where are unit vectors (the lattice spacing is taken to be unity); uyy, uzy can 
be expressed similarly. At the beginning, all deformations are elastic, and the stress 
tensor is related to the strain tensor through the generalized Hooke's law 

U , . ( . )  13 = l i ~ l ~ , ( r ) 6 ~ ~  + 2 p ( u i , ( r )  - f 6 i j u l l ( r ) )  (2) 

where I<, p are bulk and shear moduli respectively. Before any ruptures occur, the 
force in the system must be in balance. 'lb he specific, the force components at any 
node T ,  Fi = jax, musi be zero. Tne discreiiteii version of .", L 

FZ(r) = Z [ u = Z ( r + b ) + u 2 2 ( ~ + d ) - u , z ( r - b ) - u = I ( r - d )  1 

+U=,,(' + b)  + uZy(~ - d )  - U,,(. - b )  - O.,,(T + 41 (3) 

where d = ( e ^ =  - eY)/2 and b = (is + GY)j2. A similar expression can be written 

I"' ' Y l ' J '  
The system is driven by uniformly increasing the shear stress at a constant rate p 

and we only consider the shear mode of rupture. In the present letter we load the 
component U,,,. We hegin by considering the model without static fatigue. When the 
stress somewhere exceeds a critical value, it is released while the medium undergoes 
a local rupture. It is well known that a shear rupture can be modelled by a double- 
couple (quadrupole) force redistribution [8]. This is due to the fact that no additional 
force or torque can be generated following a local rupture. The redistribution takes 
place with the speed of sound. At the positions with increased stress, the stress may 
now exceed the critical value causing further ruptures; thus the local instability may 

fnr U I^\ 
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cause a chain reaction. Our model does not describe the details of the dynamical 
process of ruptures (we treat the velocity of sound as infinitely large), but only the 
stress distribution before and after the rupture. For simplicity we assume that- local 
shear fractures occur only in specific directions, i.e. in the directions of d,, &,, b, and 
2. We embed the active region which we will simulate in an infinite medium. For Our 
finite system this corresponds to open boundary condition with the activity outside 
the system neglected. The continuous transfer of stress to the outside region allows 
a self-organized steady state [9] to develop in spite of the continued loading. Note 
that the periodic boundary condition will fail completely, because streSS cannot be 
released and the total stress is ever increasing in the system. Let us consider the effect 
of a local rupture, say a shear fracture in the dz direction at plaquet T,,. After the 
break the original shear stress at the ruptured site is reduced. The additional stress 
elsewhere is generated by a double-couple source located at the ruptured plaquet. 
This leads to a transfer of stress out of the active region (open boundary conditions) 
allowing a steady state to develop in spite of the continuing increase in stress in this 
region. In our model the double-couple force distribution is simply four forces acting 
on the corner nodes of the ruptured plaquet (see plaquet (a) in figure 1) 

FAT)  = fJZ[b6,, ,o+b - d6,,,o+d - b6,,,,-b + d6,,,-dI. (4) 

Equation (4) satisfies the requirement that the net force and the net torque generated 
by the double couple must be zero, and we find the same double-couple force 
distribution if the rupture is along Z,. The distribution with respect to fracture 
in the 6 or 2 direction is shown in plaquet (b) of figure 1. Because we consider 
special fracture directions, only two components of the stress tensor are needed: 
u1 E U or 6, direction and 
cr2 E ;(U,, -U=,.) for determining the condition for fracture in the 6 or d direction. 
In what follows we assume that U stands for one of these components. The new stress 
distribution can then be calculated as uneW = udd + U ' ,  where the elastic contribution 
to the additional stress U' is induced by the double-couple source. The non-elastic 
contribution is only non-zero for the stress component parallel to the fractured surface 
at the ruptured site. From the force balance condition at the ruptured site we can 
see that this non-elastic contribution is -&f, an amount that exactly balances the 
fictitious double-couple forces. For the case where the rupture is in the ds or 2, 
direction, vi and U; are given below 

for determining the condition for fracture in the 'Y 

UI,z(V)  = - jG1,z (T  - TU) (5 )  
7 .  ~~ 

where j = f \ / z ( ~ i  + p j 3 j  j ( i c  + 4p p) and are iattice Green functions 

' (7) 

The derivation of (4)-(7) is presented in detail elsewhere. We have checked that the 
Green functions reduce to the correct continuum limit for the double-couple stress 
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redistribution, and we have obtained excellent agreement with analytical results in a 
special case [lo]. At long distances the Green functions decay as l/rd, where d is 
the spatial dimension. At short distances the largest stress increase is near the edge 
of a crack. After the rupture, the shear stress ul (E U=,) on the fractured segment 
is reduced to a percentage z of the original value (in the calculation presented here 
we use z = 50%, and we have checked that the scaling behaviour is insensitive to 
z). We have U, + u{(r,,) = zu, where U,, is the original shear stress just before the 
rupture. This leads to -jG,(O) + (1 - z)uu = 0, and U;, U; can be written as 

Similarly, we can obtain the additional stress U;,* due to a rupture in the direction 
of 6 or 2 

U;(?-) = -( 1 - z)uuGz(r - r u ) / ( l -  G,(O)) 

U;(.) = - ( I -  z)~,(6,,u - GI(T - v u ) ) / ( l -  Gi(O)). 

(9) 

(10) 

Again, U,, is the original shear stress uz(= f(u,, - U,,)) at the ruptured site just 
before the rupture. Note that the updating of the stress redistribution will be fast 
since the Green functions only need to be calculated once at the beginning of the 
simulation. 

After each rupture the fractured plaquet is weakened: the stress threshold is 
reduced to a lower value 8, (Initially we assign the critical stresses to be random 
numbers between 8, and 8). This weakening of fractured surfaces is responsible for 
generating a fault zone [lo]. After the rupture, the fractured surface is allowed to 
anneal slowly. The annealing process is not well understood. In this letter, we sim ly 
assume the strength of the fractured surface will grow as 8, = 8 -  ( 0 -  81)e-(*-L~) y ,  
where 1,  sets the time scale for annealing and 1,  denotes the time of the last fracture 
(b',(t = ti) = 8, by definition). Other annealing laws can also be employed [lo]. We 
have found that the statistical properties discussed in the present letter are insensitive 
to the annealing law. 

We can measure the size of an earthquake by the 'seismic moment' s which is 
proportional to the total number of sites that have ruptured following the initial 
instability. We have calculated the distribution of seismic moment and found that it 
is a power law N ( s )  m l/sr. This is the well known Gutenberg-Richter law [ll]. 
We found the exponent T to be approximately 1.3, which agrees with the exponent 
found in [5] within mmputational errors. 

The model which we have described so far, has only two time scales: the slow 
geological time scale which determines the accumulation of shear stress and the 
annealing rate. Both time scales are very large. In a real earthquake sequence, 
however, there appears to be a third and smaller time scale. Although the main 
shock lasts only for about a minute, the entire earthquake sequence combining 
foreshocks, mainshock, and aftershocks can last for many weeks. The aftershock 
sequences are found to obey Omori's law [IZ]: the rate of aftershocks following the 
main shock decays as 1/1c as a function of time, with the exponent ( close to one. 
i n e  most popuiar expianation of Omori's iaw is static fatigue i4,i3j that 1ne rock 
strength is time-dependent. When the applied stress U is below the instantaneous 
breaking strength but is above the stress-corrosion limit e,, rocks generally break with 
probability per unit time proportional to eo", where CI is a constant. 

- 
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Tb illustrate this general physical picture and to verify that our model can be 
made to satisfy Omori's law, we have modified our model to incorporate the physics 
of static fatigue. Consider a specific plaquet at the position ro in our model. If 
the shear stress ui(ru) is above the instantaneous breaking threshold of the plaquet 
Bj(ro), the plaquet will fracture as described above. However, when the stress is 
below Bi but is still above e,,, the plaquet is set to break with probability per unit 
time given by e"(Oi-@-). 

below the respective instantaneous breaking thresholds as well as the stress corrosion 
limit Bo, nothing will happen; this is in the period between earthquake sequences, 
which we call the rest state. Whenever there is a place where the stress is above 
the local instantaneous breaking threshold or the stress corrosion limit O,, ruptures 
in the systems are expected, and an earthquake sequence begins. The return of the 
system to the rest state signals the end of this earthquake sequence. Each earthquake 
sequence can contain many shocks, separated by periods of no activity with some sites 
still remaining to be fractured by static fatigue. The largest shock in a sequence is 
defined to be the main shock; the shocks before the main shock are foreshocks and 
the shocks after it are aftershocks. 'k check Omori's law, we calculate the number of 
aftershocks following the main shock as a function of time, and average over many 
earthquake sequences. 

Now 8" e.arthq.ake seq.ence. C2" bP defined PS fn!!o=. When 2!! !em! stresse-s are 

1 0  t 100 1000 
J 

Figure 2. Omori's law: lhe log-log 
plots OC lhe rate of (a) aftenha'k; 
(b) Coreshock as functions of time 
following (preceding) the mainshock. 
l , , C  p L " , , * L L *  "..,"U -Y aa= YCI..,.." 

in the ml. 
n^ ̂^_...~.__ . _ I . . _"  .."-A "_ .I-c__ 

The result of a computer simulation is plotted in figure 2 In the simulation 
presented we start with zero initial stress and yield strengths randomly distributed 
between 0, = 0.25 and f3 = 1. Open boundary conditions are employed as described 
earlier for a 40 x 40 system. The shear stress U, is uniformly increased at the rate 
p = until breakages occur, and the stress redistribution following each breakage 
is computed from (8). The stress corrosion limit U,, is taken to be 0.5, and the stress 
reduction 1: = 0.5. The rate a in the static fatigue law was chosen as 15, while the 
fault healing time constant tu was O . O l / p .  The first So00 sequences were discarded 
to allow the system to reach a steady state. The data from the next 5000 sequences 

agreement with the (40 x 40) results. The linearity of the log-log plot indicates the 
Omori law N ( t )  = A / t r  with E E;: 0.90. We have made a number of mm with 
modified parameter values, but have not detected any dependence of the exponent 
on these values. The corresponding result for foreshocks is also plotted. Scholz [14] 

ir nrerentd in finitre 3 Reciilfr frnm 2 lnroer wctem I lM Y 1 M I  ,-.-...'I are in niiilitativp --... I..._ .--.,.-- l.. ..b".- -. ..-... .I.D1. I I I-... ,-~- - -_- J 
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found that ,$ = 1 can be obtained by assuming randomly distributed stress levels 
induced by the mainshock; this can be viewed as a mean field result in which the 
spatial carrelations are neglected. Simulations with different parameter values and a 
disscusion of spatial patterns of earthquakes is presented elsewhere [lo]. 

We wish to thank Per Bak and Chao ling for discussions. This work is supported by 
the Natural Sciences and Engineering Research Council of Canada. 
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